

УДК 338(470+571)

ТЕХНОЛОГИЧЕСКАЯ МОДЕРНИЗАЦИЯ КАК ДРАЙВЕР РАЗВИТИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

М. Н. Козин

Саратовский государственный университет E-mail: kozin-volsk@mail.ru

Ключевые слова: технологическая модернизация, конкурентоспособность, экономические отношения, Российская Федерация, эффективность, риск, инновации, технологический уклад.

Technological Modernization as a Driver of Development of the Russian Federation

M. N. Kozin

The article deals with the pressing economic problems, macroeconomic conditions and controls that ensure the dynamic development of a national industrial and technological modernization of the economy the Russian Federation.

Key words: technological modernization, competitiveness, economic relations, Russian Federation, efficiency, risk, innovations, technological way.

Драйвером развития России может стать выход на новый технологический уровень, а это не только технологии и инновации – это другая культура жизни, бизнеса, труда, потребления, инвестиций и образования.

В. Путин¹

Итоги декабрьских выборов 2011 г. в Государственную думу продемонстрировали определенное падение доверия не только к партии «Единая Россия», но в целом к «властной конструкции» – сложившейся в стране политической системе. Такая ситуация сложилась не мгновенно, а явилась результатом накопившихся и не решаемых социально-политических и экономических проблем.

В ответ на рост ожиданий существенных изменений кандидат в президенты Владимир Путин попытался привлечь к себе образованный и мобильный класс, опубликовав цикл программных статей, в которых высказал мнение о том, где находится и куда идет Россия, обрисовал круг вопросов, отражающих его предвыборную программу и приглашающих к дискуссии и диалогу. На наш взгляд, это разумный подход, поскольку именно через дискуссию и конструктивный диалог можно обсуждать задачи, решение которых выведет Россию на новый уровень социально-политического и экономического развития.

Публикация Владимира Путина «О наших экономических задачах» вызвала у автора статьи наибольшей интерес, поскольку она вырисовывает планы, меры, которые должны компенсировать деиндустриализацию, произошедшую в 1990-х и 2000-х гг., привлечь новые технологии в экономику страны, создать мощную внутреннюю финансовую систему и новый благоприятный деловой и инновационный климат. Главная методологическая нестыковка заключается в том, что российская экономика держится на тех долларах, которые поступают в бюджет именно от центров экономического влияния, от продажи этим центрам российского сырья - нефти и газа. Именно поэтому Владимир Путин определил кардинальную задачу перехода российской экономики от экспортно-сырьевого к инновационному типу развития.

Такой переход соответствует объективным требованиям повышения конкурентоспособности российской экономики, поскольку современные позиции России в сфере наукоемких технологий и инноваций на фоне ведущих мировых держав достаточно скромны. Несмотря на большой научный потенциал, доля нашей страны на мировом рынке гражданской наукоемкой продукции не превышает 0.3%, в то время как доля США – 36%, Японии -30%, Германии -17%, Китая $-6\%^2$. В условиях активно развивающейся современной экономики переход на инновационный путь развития является частью и важным элементом сопутствующих структурно-технологических изменений, где принципиально изменяются формы сочетания средств труда, предметов труда и рабочей силы в процессе производства. Однако задуманные планы могут споткнуться о неопределенность российской экономики. Современное состояние инновационной сферы в России свидетельствует о серьезных противоречиях. С одной стороны, существует достаточно высокий научно-технический потенциал в стране. В то же время этот потенциал не способствует модернизации экономики и не направлен на повышение инновационной привлекательности и активности, закрепление результатов рыночных реформ и обеспечение устойчивого экономического роста, высокого уровня жизни граждан.

Можно назвать следующие основные тенденции, которые могут перевести в среднесрочной перспективе экономику России в состояние не просто

стагнации, а стагфляции – то есть сочетания повышения цен при отсутствии экономического роста.

Первый тревожный фактор состоит в том, что «быстрого и уверенного выхода из кризиса

мировой экономики в целом не получилось» (табл. 1)³. Макроэкономические показатели у России улучшаются, но не достигают докризисных показателей.

Таблица 1 Мировая динамика реального объема ВВП (прирост/снижение) в % к предыдущему периоду

Страна	2006 г.	2007 г.	2008 г.	2009 г.	2010 г.	III квартал 2011 г. в % к III кварталу 2010 г.
Россия	8,2	8,5	5,2	- 7,8	4,0	4,8
Бразилия	3,9	6,1	5,2	- 0,6	7,5	3,1
Германия	3,4	2,8	0,7	- 4,7	3,5	2,6
Индия	9,6	9,3	6,8	8,0	8,5	8,1
Италия	2,0	1,5	-1,3	- 5,2	1,3	0,8
Канада	2,8	2,2	0,7	- 2,8	3,2	2,4
Китай	11,6	14,2	9,6	9,1	10,3	9,1
Великобритания	2,8	2,7	- 0,1	- 4,9	1,3	0,5
США	2,7	1,9	- 0,3	-3,5	3,0	1,6
Франция	2,2	2,3	- 0,1	- 2,7	1,5	1,6
Япония	2,0	2,4	-1,2	- 6,3	3,9	- 0,2

Второй фактор — слишком завышенные социальные обязательства. Так, прирост среднемесячной начисленной пенсии с января 2009 года по сентябрь 2010 г. составил 64%. Для сравнения, аналогичный показатель для группы развивающихся стран в целом в 2009 г. составил 2,8 процентных пункта, по группе развивающихся стран входящих в большую двадцатку — 3 процентных пункта. Повышение пенсий не является антикризисной мерой, а предназначено для смягчения негативных социальных последствий экономического кризиса, а иногда и предвыборной агитацией.

Третий фактор нарастания рисков — это инфляция. В 2011 г. инфляция несколько снизилась и вышла на уровень 6,2%. Тем не менее она в два-три раза превышает общемировые значения. Очевидно, что технологической модернизации экономики при высокой инфляции не бывает. При существующей гипертрофированной зависимости бюджета от цены на нефть Россия нуждается не просто в высоких, а в постоянно растущих ценах на нефть. Поэтому если мы хотим инвестировать в развитие новых технологий и инновационной экономики, нам нужно бороться с инфляцией. В противном случае этот бизнес не будет окупаться.

Таким образом, современная модель экономики России только пытается войти в стадию модернизации и пока не имеет преимущественных показателей в постиндустриальном мире. Для России характерно сочетание «старых» и «новых» институтов. Поэтому нам очень важно определить вектор инновационной направленности развития экономики Российского государства, который должен включать в себя

стимулирование инновационной активности на макро- и микроуровне, управление нововведениями, проведение государственной структурной и научно-технической политики, поиск дополнительных источников финансирования, привлечение потенциальных инвесторов и выбор оптимальных форм организации инновационного производства и др.

На современном этапе становится очевидным, что важнейшее место в развитии ведущих мировых держав занимает инновационная деятельность, которая является приоритетом для государств, стремящихся найти достойную нишу и прочные позиции в мировой экономике. Соответственно, чтобы обеспечить динамичное развитие национальной промышленности на основе технологической модернизации, необходимы соответствующие макроэкономические условия и регуляторы, которые должны включать в себя эффективный механизм государственной научно-технической и промышленной политики⁴. К таким условиям и регуляторами следует отнести следующие:

1. Необходимость обеспечения высокого уровня внутренних затрат на научные и прикладные исследования и разработки. В структуре инвестиций в науку должны превалировать средства частных корпораций. Последние годы отражали обратную ситуацию, когда уменьшались объемы финансирования фундаментальных, научноисследовательских и опытно-конструкторских работ. При этом внутренние затраты предпринимательского сектора экономики России на научные и прикладные исследования и разработки по сравнению с развитыми странами существенно меньше (табл. 2).

24 Научный отдел

Таблица 2 Внутренние затраты на научные и прикладные исследования и разработки (по основным секторам) в 2006 г.

	ВЗ,	B3, P2.0/	Темп прироста		очникам ния, % к ВВП	По секторам деятельности, % к ВВП		
Страна млн долл. по ППС*	В3, % к ВВП	ВЗ за 2000– 2006 гг.	Предприни- мательский сектор	Правитель- ственный сектор	Предприни- мательский сектор	Правитель- ственный сектор	Секторы высшего образования	
Россия	20 154,9	1,08	48,49	0,31	0,66	0,71	0,29	0,07
Китай	86 758,2	1,42	171,82	0,98	0,35	1,01	0,28	0,13
США	343 747,5	2,62	10,12	1,70	0,77	1,84	0,29	0,37
Япония	138 782,1	3,39	21,86	2,62	0,55	2,62	0,28	0,43
Юж. Корея	35 886,0	3,23	1,94	2,43	0,74	2,49	0,37	0,32
Германия	66 688,6	2,53	9,29	1,68	0,70	1,77	0,35	0,41
Великобри- тания	35 590,8	1,78	12,00	0,81	0,57	1,10	0,18	0,47
Франция	41 436,3	2,11	8,73	1,11 (2005 г.)	0,82 (2005г.)	1,34	0,37	0,38
Канада	23 306,0	1,94	17,96	0,93	0,63	1,06	0,18	0,69
Италия	17 827,0 (2005 г.)	1,09 (2005 г.)	8,99 (2005 г.)	0,43 (2005 г.)	0,55 (2005 г.)	0,54	0,19	0,33 (2005 г.)
EC	242 815,6	1,76	15,03	0,94 (2005 г.)	0,61 (2005 г.)	1,11	0,24	0,39
ОЭСР	817 768,9	2,26	16,53	1,44	0,66 (2005 г.)	1,56	0,26	0,39

Примечание. Сост. по: OECD, Main Science and Technology Indicators, April 2008.

В структуре инвестиций в науку доминирует государство, тогда как в инновационной экономике должны превалировать средства частных корпораций. Доля затрат на технологические инновации в стоимости промышленной продукции в России составляет всего 1,16%, тогда как в Германии – 5%, в Италии – 2,3%, в Испании – 1,4%. Причем в ВВП инновационная продукция занимает менее 1%, тогда как в Италии и Испании – от 10 до 20%, в Финляндии – 30%⁵. Кроме того, с 1990 г. инновационная активность страны в наукоемком секторе снизилась практически в шесть раз. Так, если в 1990 г. доля России в мировом экспорте составляла 6%, в 2000 г. – 1%, то в 2008 г. – всего 0,2%⁶.

Во многом такое значительное снижение доли наукоемкой продукции в России вызвано стремительным падением в структуре экспорта машиностроительного сектора. Одновременно крупнейшие потребители продукции российского машиностроения конца XX в. (Китай и Индия) резко сократили импорт российских машин и оборудования. Другие составляющие наукоемкого рынка — программное обеспечение и нанотехнологии — находятся в России пока в зачаточном состоянии.

2. Преобладание доли государственного финансирования инновационной деятельности. Характерным отличием России от стран «Большой

семерки» и Китая является преобладание доли правительственного финансирования (61%). В развитых странах доля государственного финансирования научных и прикладных исследований намного ниже бизнеса и составила: 16% в Японии, 29% в США, 28% в Германии, 25% в Китае⁷.

Государство обязано способствовать внедрению лучшей мировой практики ведения бизнеса, но для этого должны быть созданы особые условия и убраны препятствия для развития лидеров в отраслях экономики. Следовательно, государству нужно поддерживать инновационный экспорт и выход отечественных компаний на мировой рынок. Одновременно низкая инновационная активность российского бизнеса предопределяет масштабы отставания по глубине и качеству инновационных процессов: доля инновационной продукции в выручке уступает мировым лидерам более чем в три раза, а доля новой для рынка продукции - практически на порядок. При этом эффективная реализация инновационных процессов во многом связана с объединением в рамках целостной воспроизводственной структуры всех элементов системы «наука – технология – производство – потребление», предусматривающей создание разветвленной системы сбытового и сервисного обслуживания для стимулирования научных исследований и активизации изобретательской деятельности на

Экономика 25

^{*}ППС – паритет покупательной способности.

основе подключения нового типа связей – обратных связей в инновационном процессе. Именно благодаря постоянной и быстродействующей обратной связи с рынком через повышенную реакцию на изменение запросов потребителей японские фирмы завоевали автомобильный рынок. Так, фирмы «Тойота», «Ниссан», «Хонда» тратили на разработку новой модели около 24 мес., а «Дженерал моторс», «Форд» и «Крайслер» – 36–48 мес. 8

3. Недостаточная роль сектора высшего образования и отраслевых НИИ в формировании инновационных продуктов и технологий. Российская Федерация имеет очень малую долю затрат сектора высшего образования — всего 6%. Данный показатель говорит о недостаточной роли образования в научно-исследовательской деятельности страны. Существенным препятствием для повсеместного развития инноваций является последовательное сокращение численности от-

раслевых НИИ. Кроме этого, российские вузы не выпускают специалистов узкой специализации, требуемых экономике. Ситуация может измениться, если вузы станут готовить специалистов по заказам предприятий. Кадровое обеспечение научно-инновационной деятельности следует осуществлять по двум направлениям: подготовка специалистов, способных генерировать новые знания и технологии, а также специалистов в области инновационного менеджмента, способных организовать и управлять инновационными процессами. Первое направление нацелено на дальнейшее развитие интеграции науки и образования. Второе направление обеспечивает подготовку специалистов, ориентированных на предпринимательство в инновационной сфере.

4. Низкая результативность научно-исследовательской деятельности, которая определяется числом зарегистрированных патентов и изобретательской активностью (табл. 3).

Таблица 3 Показатель численности патентов и его производные

Страны	Абсолютная численность патентов	Темп прироста числа патентов за 2000–2006 гг.	Доля стран в международном патентном деле	Число патентов на 1 млн чел.
Россия	63 17,00		0,12	0,44
Китай	356	339,14	0,70	0,27
США	15774	5,89	31,10	53,12
Япония	14976	3,42	29,53	117,21
Германия	6298	3,75	12,42	76,38
Великобритания	1651	- 0,52	3,25	27,41
Франция	2472	8,42	4,87	39,36
Канада	777	37,29	1,53	24,04
Италия	722	8,87	1,42	12,33
EC	14575	4,57	28,74	29,63
ОЭСР	50299	9,54	99,17	42,97

Примечание. Сост. по: OECD, Main Science and Technology Indicators, April 2008.

Недостаточность и фрагментальность отечественных технологий не создает критической массы для перехода на качественно новый уровень НИОКР. Затраты на них в России составляют около 12 млрд долл., в то время как в США – 264 млрд, EC - 150 млрд, Японии - 130 млрд долл. Отсюда такой низкий коэффициент изобретательской активности (количество поданных заявок на изобретения на 1 млн человек) – в 3–4 раза меньше, чем в Германии и США, и в 20 раз, чем в Японии⁹. В Роспатент ежегодно поступает около 38 000 заявок, после рассмотрения которых выдается примерно 19 000 патентов. Так, в 2009 г. доля количества изобретений в России составила 0,36%. Именно по этим причинам доля России в мировом объеме торговли наукоемкой продукцией оценивается в 0,3-0,5% (доля США -36%, Японии – 30%, Германии – 17%, Китая – 6%) 10 . Безрадостная картина российских показателей (кроме

темпов прироста числа патентов) обусловливается ограниченностью финансовых средств и особенностей их правового положения.

В качестве теоретической основы для разработки рекомендаций по стратегии экономического роста России в условиях глобальных структурных изменений используется теория долгосрочного технико-экономического развития, которая представляет этот процесс в виде последовательного замещения крупных комплексов технологически сопряженных производств — технологических укладов¹¹. Ядром нового технологического уклада становятся информационно-коммуникационные технологии, нанотехнологии, биотехнологии, новое природопользование, робототехника, новая медицина, высокие гуманитарные технологии и т. п.

Современный мир стоит на пороге VI технологического уклада, его контуры начинают складываться в развитых странах мира, в первую

26 Научный отдел

очередь — в США, Японии и КНР. Эти страны характеризуются нацеленностью на развитие и применение биотехнологий, нанотехнологий, генной инженерии, мембранных и квантовых технологий, фотоники, микромеханики, термоядерной энергетики. Синтез достижений на этих направлениях может привести к созданию, например, квантового компьютера, искусственного интеллекта, обеспечить выход на принципиально но-

вый уровень в системах управления государством, обществом, экономикой (табл. 4, рисунок). В свое время СССР смог максимально воспользоваться преимуществами IV уклада. Однако лидерство в том или ином укладе требует от страны сверхусилий. Например, Южная Корея стала одним из лидеров V уклада, но ей пришлось до 43% своего ВВП тратить на инвестиции и инновации, снизив потребление¹².

Таблица 4

Научная периодизация технологических укладов

Технологические уклады	Период доминирования	Страны-лидеры	Преобладающие технологии		
I	1770–1830 гг.	Бельгия, Велико- британия, Франция	Водяной двигатель, выплавка чугуна и обработка железа, строительство каналов		
II	1840–1880 гг.	Франция, Бельгия, Великобритания, США, Германия	Паровой двигатель, угольная промышленность, машиностроение, черная металлургия, станкостроение		
III	1890–1940 гг.	Франция, США, Великобритания, Германия	Электротехническое и тяжелое машиностроение, производство стали, неорганическая химия, тяжелые вооружения, кораблестроение, линии электропередач, стандартизация		
IV	1940—1980 гг.	США, страны Европы, Япония	Синтетические материалы, органическая химия, цветная металлургия, электронная промышленность, автомобилестроение, атомная энергетика		
VI	1990–2030 гг. (прогноз)	США, Япония, страны ЕС, Юго-Восточной Азии	Вычислительная техника, телекоммуникации, роботостроение, микро- и оптоволоконные технологии, космическая техника, искусственный интеллект, биотехнологии		
VI	2030–2080 гг. (прогноз)	США, Япония и КНР	Нанотехнологии, генная инженерия, мембранные и квантовые технологии, фотоника, микромеханика, термоядерная энергетика		

Диффузия инноваций вдоль подъемов циклов экономической активности Кондратьева 13

К сожалению, постсоветская Россия полностью «проспала» V уклад, занявшись саморазгромом, самопроеданием и сверхпотреблением. При этом на данный момент в США доля V технологического уклада составляет 60%, IV-20% и около 5% приходятся на VI техноло-

гический уклад. Как следует из сложившегося ритма долгосрочного технико-экономического развития, V технологический уклад близок к пределам своего роста. Об этом свидетельствуют всплеск и падение цен на энергоносители, мировой финансовый кризис — неизбежные признаки

Экономика 27

завершающейся фазы жизненного цикла и начала структурной перестройки экономики на основе следующего.

Ведущие страны мира очень быстро реагируют на вызовы времени, поскольку располагают мощным научным заделом, активной системой инноваций, позволяющей создавать и постоянно поддерживать этот задел на должном уровне и быстро превращать его в практические результаты. Согласно прогнозам при сохранении нынешних темпов технико-экономического развития, VI технологический уклад вступит в фазу распространения в 2010–2020 гг., а в фазу зрелости – в 2040-е гг. При этом в 2020–2025 гг. произойдет новая научно-техническая и технологическая революция, основой которой станут разработки, синтезирующие достижения в вышеназванных базовых технологиях. Преодоление тенденций деградации научно-производственного потенциала в Российской Федерации требует резкого наращивания инвестиционной и инновационной активности.

Таким образом, специфика сложившейся на сегодняшний день ситуации в России заключается в следующем. В стране имеются определенные технологические заделы, уникальная научно-производственная база и пока еще высококвалифицированные кадры, которые могут осуществлять разработку научно-технической продукции. В то же время Россия находится на одном из последних мест по поставляемой на рынки готовой инновационной продукции, технологиям, и существует слабая ориентация имеющегося инновационного потенциала российских компаний на коммерциализацию научных достижений.

Не вызывает сомнений ведущая роль научно-технического прогресса, а значит необходимо обновлять на его основе технологическую базу производства во всех сферах экономики. Особенно актуален этот тезис для российской промышленности, стремящейся перейти от традиционной ориентации на экспорт сырья и энергоресурсов к развитию обрабатывающих отраслей. В качестве главного фактора, определяющего эффективность производственной деятельности промышленных компаний, выступает технологическая модернизация, ведущая к снижению издержек производства на основе развития наукоемкого производства и внедрения эффективного механизма инновационной деятельности.

Необходимость модернизации экономики России обусловлена сложившейся социальноэкономической ситуацией: моральным и экономическим снижением потенциала экспортносырьевого развития страны, кризисными явлениями в экономике, неразвитостью экономических институтов, диспропорциями регионального развития.

Стоит согласиться с Владимиром Путиным, который считает, что «деловой климат в стране,

ее привлекательность для долгосрочного помещения капиталов все еще являются неудовлетворительными». Поэтому важнейшей задачей, по его и нашему мнению, остается продолжение «реформ, направленных на улучшение делового климата», в том числе — борьба с коррупцией, достижение «прозрачности и подконтрольности обществу в работе представителей государства, от таможенных и налоговых служб до судебной и правоохранительной системы» 14.

Примечания

- ¹ Выступление В. Путина на форуме «Россия–2012» : [официальный сайт Владимира Путина]. URL: http://putin2012.ru (дата обращения: 03.02.2012).
- ² См.: Лепский В.Е. [и др]. Методологические аспекты инновационного развития России. Проектно-аналитическая записка // Экономические стратегии. 2010. № 7–8. URL: http://www.reflexion.ru/club/KIR-PZ.pdf. (дата обращения: 02.02.2012).
- ³ См.: Федеральная служба государственной статистики: [сайт]. URL: http://www.gks.ru (дата обращения: 31.01.2012).
- 4 См.: Андреева Э. А. Методология управления инновационной активностью субъектов национальной инновационной системы России : автореф. дис. ... д-ра экон. наук. М, 2010.
- ⁵ См.: Ясин Е. Модернизация и общество // Вопр. экономики. 2007. № 5. С.15.
- 6 См.: Калышева Е. Российская инновационная отрасль ждет признания своих прав // Рос. бизнес-газета. 2010. 6 июля. С. 4.
- ⁷ См.: Андреева Э. А. Теоретические и методологические аспекты управления инновационной активностью субъектов национальной инновационной системы России: монография. Пенза, 2009.
- 8 Cm.: Multinational management strategies // Multinational busness. L., 1990. № 3. P. 56.
- 9 См.: Бекетов Н. В. Проблемы формирования государственной инновационной политики в области охраны интеллектуальной собственности // Инновации. 2003. № 8. С. 24.
- $^{10}\;$ См.: *Лепский В. Е.* [и др]. Указ. соч.
- 11 См.: Глазьев С. Ю. Развитие российской экономики в условиях глобальных технологических сдвигов: науч. докл. М., 2007.
- 12 См.: Козин М. Н. Технологическая модернизация как главная экономическая задача России // Поволжский торгово-экономический журнал. 2012. № 1(23). С. 57–69.
- 13 См.: Малинецкий Г. Г. Шестой уклад. Биотехнологический дискурс // Закрытие второго Международного конгресса «ЕвразияБио 2010», 15.04.2010. URL: http://www.keldysh.ru/departments/dpt_17/tek.html (дата обращения: 02.02.2012).
- ¹⁴ О наших экономических задачах : [официальный сайт Владимира Путина]. URL: http://putin2012.ru (дата обращения: 02.02.2012).

28 Научный отдел