следы бойков

Классификация изображений следов бойков по экземплярам оружия с помощью полносвязной нейронной сети

Введение. Цель работы – повышение эффективности идентификации огнестрельного оружия по изображениям следов бойков в автоматическом режиме. Актуальность поставленной задачи определяется низкой эффективностью известных методов автоматической идентификации оружия по следам бойков с отдельными топологическими типами индивидуализирующих признаков, что в целом отрицательно сказывается на расследовании преступлений, связанных с применением огнестрельного оружия. Формирование клоновых изображений. Для обучения нейронной сети была сформирована обучающая выборка, включающая 140 оригинальных изображений следов бойков из 50 классов, на основе которых получено порядка 1000 клоновых изображений с несколько измененными индивидуализирующими признаками. Под классом в данном случае понимается отдельный экземпляр оружия. Обучение нейронной сети. В качестве классификатора использовалась полносвязная нейронная сеть со следующей архитектурой: входной слой нейронов; два скрытых слоя; выходной слой. Входной слой включал 2500 нейронов, первый скрытый слой – 625, второй скрытый слой – 156, выходной слой состоял из 50 нейронов (по числу классов). Оценка результатов расчетов. Точность прогнозирования обученной нейронной сети оценивалась в соответствии с метрикой Accuracy, которая равна отношению числа правильных прогнозов к общему числу сформированных прогнозов. Точность прогнозирования по максимальному сигналу на одном выходном нейроне составила 81%, а при учете максимальных сигналов на трех выходных нейронах – порядка 91%. Выводы. В целом, исследования показали возможность классификации изображений следов бойков по экземплярам оружия с помощью полносвязной нейронной сети, а также эффективность применения искусственно генерированных клоновых изображений следов бойков для обучения полносвязной нейронной сети в случаях с малым количеством исходных объектов.

СРАВНЕНИЕ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ СЛЕДОВ БОЙКОВ С ДОМИНИРУЮЩИМИ ПРИЗНАКАМИ В ВИДЕ ОКРУЖНОСТЕЙ И ДУГ

Введение. Разработка алгоритмов автоматического сравнения цифровых изображений следов бойков является актуальной задачей, направленной на повышение эффективности расследования преступлений, связанных с применением огнестрельного оружия. В данной работе рассматриваются следы бойков с ярко выраженными признаками в виде окружностей и дуг, которые имеют единый центр. Для оценки степени схожести следов в работе предложен метод, основанный на оценке в сравниваемых следах Евклидова расстояния между радиусами наиболее схожих признаков. Предварительная обработка. Для исключения негативного влияния шумов и различных артефактов изображения подвергались предварительной обработке. Информативные признаки выделялись маркерами, позволяющими точно определить радиусы соответствующих признаков. Методика поиска парных следов. Для оценки потенциально парных следов был разработан критерий на основе вычисления модифицированного Евклидова расстояния. Сформулированы критерии формирования приоритетного списка. Численный эксперимент. Проводился поиск парных следов по базе данных, состоящей из 60 объектов. В 90% случаев след, парный к тестовому, оказывался в первой четверке приоритетного списка. Выводы. Предложенный алгоритм позволяет достаточно быстро и эффективно проводить сортировку объектов тестового массива по степени сходства их признаков в виде дуг и окружностей с соответствующими признаками исследуемого следа.

ВЫДЕЛЕНИЕ ИНДИВИДУАЛЬНЫХ ПРИЗНАКОВ НА ЦИФРОВЫХ ИЗОБРАЖЕНИЯХ СЛЕДОВ БОЙКОВ

Введение. Актуальность работы обусловлена широким внедрением автоматизированных баллистических идентификационных систем (АБИС) в баллистические лаборатории экспертных учреждений России. Баллистические системы позволяют автоматизировать проведение проверок по гильзотекам, содержащим тысячи однотипных объектов. Однако в отдельных случаях системы допускают «промахи», т.е. не могут найти в массиве электронной гильзотеки «парный» след (след, оставленный тем же экземпляром оружия, что и исследуемый). Кроме этого, иногда «парный» след из тестового массива ставится в конце приоритетного списка, что осложняет работу эксперта. Это обусловлено, в первую очередь, большим морфологическим разнообразием и высокой вариативностью индивидуальных признаков оружия, отобразившихся в следах бойков, а также неравномерным освещением следов из-за их сложной формы. Теоретический анализ. Исследования показали, что неравномерность яркости цифровых изображений следов бойков может быть сглажена путем применения метода гомоморфной обработки изображений. Анализ морфологии индивидуальных признаков оружия, отобразившихся в следах бойков более 30 моделей оружия, позволил выделить 6 основных морфологических типов признаков. Экспериментальное исследование. Разработаны эффективные алгоритмы выделения и бинаризации признаков в виде крупных пятен неопределенной формы на основе применения фильтра Винера и метода Ниблэка. Для выделения признаков в виде окружностей предложен метод, основанный на применении фильтра Канни. Данные алгоритмы могут найти применение при разработке программного обеспечения баллистических систем, а также при обработке цифровых изображений следов бойков при проведении экс пертных исследований. Выводы. Метод гомоморфной обработки цифровых изображений может быть рекомендован для предварительной обработки исходных изображений. Впервые предложена классификация морфологических типов индивидуальных признаков. Разработаны алгоритмы бинаризации изображений с индивидуальными признаками в виде областей неопределенной формы и в виде окружностей